首页 | 本学科首页   官方微博 | 高级检索  
     


Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation using fiber-supported cobalt phthalocyanine
Authors:Chen Wenxing  Lu Wangyang  Yao Yuyuan  Xu Minhong
Affiliation:Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of China, Zhejiang Sci-Tech University, Hangzhou 310018, China. chenwxg@yahoo.com.cn
Abstract:A novel metallophthalocyanine derivative, cobalt tetra (2,4-dichloro-1,3,5-triazine) aminophthalocyanine (Co-TDTAPc), was prepared and immobilized on cellulosic fiber by covalent bond to obtain a supported oxidation catalyst (Co-TDTAPc-F). Co-TDTAPc-F/H202 system based on phase-transfer catalytic oxidation for decomposing dyes, including acid, reactive, and direct dyes, has been investigated thoroughly. Compared to traditional adsorption technologies and advanced oxidation processes (AOPs) for dye treatment, Co-TDTAPc-F/H202 combines the advantages of both and is more efficient and more effective. Azo dyes such as C. I. Acid Red 1 (AR1) can be quickly adsorbed onto/into the fiber from aqueous solution and decomposed in situ simultaneously in the presence of Co-TDTAPc-F and H2O2. It has been found that the reaction process is not affected by the visible light. Furthermore, it turns the negative effect of NaCl normally observed in homogeneous catalysis into positive one. The catalytic reaction can proceed at a wide pH range from acidic to alkaline. In 60 min, more than 98% of AR1 was eliminated at initial pH 2. In 90 min, about 40% of the carbon was found mineralized as determined by the analysis of the residual total organic carbon. The high-performance liquid chromatography result indicated that a substantial amount of the starting AR1 was converted to other organic products, while gas chromatography/mass spectrometry analysis showed the rest of the carbon existed mainly as small molecular biodegradable aliphatic carboxylic compounds such as oxalic acid, malonic acid, and maleic acid, etc. Co-TDTAPc-F is stable, causes no secondary pollution, and remains efficient in repetitive test cycles with no obvious degradation of catalytic activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号