Pigeon peas as a supplement for lactating dairy cows fed corn silage-based diets |
| |
Authors: | Corriher V A Hill G M Bernard J K Jenkins T C West J W Mullinix B G |
| |
Affiliation: | * Department of Animal and Dairy Science, University of Georgia, Tifton 31793 † Department of Animal and Veterinary Science, Clemson University, Clemson SC 29634 ‡ Experimental Statistics, Texas A&M University, Lubbock 79403 |
| |
Abstract: | Holstein rumen-cannulated cows [n = 7; initial body weight (BW) 640.56 ± 71.43 kg] were fed a corn silage basal diet with 1 of 3 concentrates (C = control; P10 = 10% pigeon peas; P20 = 20% pigeon peas). Cows were randomly assigned to treatments in a replicated 3 × 3 Latin square and individually fed using Calan gates. Each experimental period was 21 d with 7 d for adaption and 14 d for sample collection. Ruminal fluid samples were taken the last day of each experimental period and analyzed for pH, ammonia, long-chain fatty acids, and volatile fatty acids (VFA). Consecutive a.m. and p.m. milk samples were taken during the last 2 wk of the 21-d period and analyzed for fat, protein, long-chain fatty acids, and somatic cell count. Dry matter intake (kg/d) was reduced during the second period and was greater for P10 diets. Milk protein was greater for cows fed P20 compared with P10. Energy-corrected milk was greater for cows fed the control diet compared with P10. Treatment had no effect on milk yield. Ruminal fluid pH decreased over sampling times; however, pH remained at or above 5.5. Diets did not affect ruminal fluid pH; however, pH was different for sampling periods. Ruminal ammonia decreased until 8 h postfeeding at which time it peaked consistent with changes in ammonia concentrations that usually peak 3 to 5 h postfeeding on diets high in plant proteins. Dietary treatments altered ruminal fluid VFA with reduced concentrations of acetate and greater concentrations of propionate for control diet, resulting in reduced acetate:propionate ratio. Isobutyrate exhibited an hour by treatment interaction, in which isobutyrate decreased until 8 h postfeeding and then tended to be greater for P10 than for other treatments. Animals fed the P10 diet had greater concentrations of ruminal isovalerate. Ruminal cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid (CLA) isomers were not affected by dietary treatments. The P10 diet had greatest ruminal synthesis of cis-9,trans-11, but control cows had greatest ruminal synthesis of trans-10,cis-12. Milk CLA isomers were similar among treatments. Trends were observed for greater cis-9,trans-11 and trans-10,cis-12 for the P10 diet. Pigeon peas may be used as a protein supplement in dairy diets without affecting milk production, dry matter intake, or ruminal environment when they replace corn and soybean meal. |
| |
Keywords: | dairy pigeon pea fatty acid milk |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|