首页 | 本学科首页   官方微博 | 高级检索  
     


Recursive relationships between milk yield and somatic cell score of Canadian Holsteins from finite mixture random regression models
Authors:Jamrozik J  Schaeffer L R
Affiliation:Centre for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Abstract:Finite mixture, multiple-trait, random regression animal models with recursive links between phenotypes for milk yield and somatic cell score (SCS) on the same test-day were applied to first lactation Canadian Holstein data. All models included fixed herd-test-day effects and fixed regressions within region-age at calving-season of calving classes, and animal additive genetic and permanent environmental regressions with random coefficients. Causal links between phenotypes for milk yield and SCS were fitted separately for records from healthy cows and cows with a putative, subclinical form of mastitis. Bayesian methods via Gibbs sampling were used for the estimation of model parameters. Bayes factors indicated superiority of the model with recursive link from milk to SCS over the reciprocal recursive model and the standard multiple-trait model. Differences between models measured by other, single-trait model comparison criteria (i.e., weighted mean squared error, squared bias, and correlation between observed and expected data) were negligible. Approximately 20% of test-day records were classified as originating from cows with mastitis in recursive mixture models. The proportion of records from cows infected with mastitis was largest at the beginning of lactation. Recursive mixture models exhibited different distributions of data from healthy and infected cows in different parts of lactation. A negative effect of milk to SCS (up to −0.15 score points for every kilogram of milk for healthy cows from 5 to 45 d in milk) was estimated for both mixture components (healthy and infected) in all stages of lactation for the most plausible model. The magnitude of this effect was stronger for healthy cows than for cows infected with mastitis. Different patterns of genetic and environmental correlations between milk and SCS for healthy and infected records were revealed, due to heterogeneity of structural coefficients between mixture components. Estimated breeding values for SCS from the best fitting model for sires of infected daughters were more related to estimated breeding values for the same trait from the regular multiple-trait model than evaluations for sires of mastitis-free cows.
Keywords:causal relationship  milk yield  mixture model  somatic cell score
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号