首页 | 本学科首页   官方微博 | 高级检索  
     


Recombination luminescence from defects in boron-ion implantation-doped diamond using low fluences
Authors:Johan F. Prins
Affiliation:(1) Schonland Research Centre for Nuclear Sciences, University of the Witwatersrand, Johannesburg, Gauteng 2050, South Africa e-mail: prins@schonlan.src.wits.ac.za; Fax: (011)339-2144, ZA
Abstract: Two identical, high purity, natural type IIa diamonds, which displayed the ubiquitous blue cathodoluminescence (CL) band at ≈ 2.9 eV, as well as an indication of the corresponding green band at ≈ 2.4 eV, have been equivalently doped by using extremely low dose B+- and C+-ion CIRA-implantations respectively. Comparative CL measurements showed changes in the intensities of the 2.9 and 2.4 eV bands and the generation of bands at ≈ 4 eV, as well as at ≈ 3.5 and ≈ 4.6 eV (the latter two in the B+-CIRA diamond). The results are commensurate with the model (proposed previously) in which the 2.9 and 4 eV bands are generated respectively by electron-hole recombinations at negatively charged acceptor- and positively charged donor-like, intrinsic defects. The present results indicate that Coulomb interactions between the latter defects and (at least partially) compensated, negatively charged, boron acceptors, generate the 3.5 and 4.6 eV bands, which may be considered as higher energy (≈ 0.6 eV) replicas of the 2.9 and 4 eV bands. In both cases, two electrons and a hole interact just before the hole combines with an electron. Such a configuration of charges seems related to, and could possibly be described as, a type of ”ionised exciton molecule”, where the ”bonding” of two negative ”nuclei” is facilitated by the presence of the hole. The CL measurements further indicate that the 2.4 eV band forms when a high enough density of, in this case, neutral acceptors are present. These neutral acceptors compete with the valence band to supply holes for recombination at the negatively charged, acceptor-type, intrinsic defects which are, in the absence of the boron, responsible for the generation of the blue, 2.9 eV band. Received: 5 December 1997 / Accepted: 13 December 1997
Keywords:  Diamond  Cathodoluminescence  Ion implantation  Radiation damage  Excitons  Doping  Electronic properties  Optical properties  Recombination radiation  Acceptors  Donors
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号