首页 | 本学科首页   官方微博 | 高级检索  
     

压电陶瓷执行器的动态模型辨识与控制
引用本文:陈辉,谭永红,周杏鹏,张亚红,董瑞丽.压电陶瓷执行器的动态模型辨识与控制[J].光学精密工程,2012,20(1):88-95.
作者姓名:陈辉  谭永红  周杏鹏  张亚红  董瑞丽
作者单位:1. 东南大学自动化学院,江苏南京210096;桂林电子科技大学电子工程与自动化学院,广西桂林541004
2. 上海师范大学信息与机电工程学院,上海,200234
3. 东南大学自动化学院,江苏南京,210096
4. 桂林航天工业高等专科学校信息工程系,广西桂林,541004
基金项目:国家自然科学基金资助项目(No.60971004); 上海市科委重点基金资助项目;(No.09220503000,10JC1412200); 上海市自然科学基金资助项目(No.09ZR1423400) ;上海市教育委员会科研创新基金资助项目(No.09ZZ141,11YZ92) ;上海师范大学重点学科基金资助项目(No.DZL811,DRL904)
摘    要:为了提高精密定位系统中压电陶瓷的控制精度,研究了压电执行器的动态模型及逆模型。根据Weierstrass第一逼近定理,提出了以多项式函数逼近Duhem模型中的分段连续函数f(·)和g(·),并应用递推最小二乘算法辨识Duhem模型的参数α 及f(·)和g(·)的多项式系数,建立了压电陶瓷执行器的非线性参数化动态模型。利用辨识结果建立压电陶瓷执行器的动态逆模型,避免对压电陶瓷执行器进行复杂的模型求逆;介绍了通过逆补偿和PID复合控制对压电陶瓷系统进行的控制。实验结果表明:仅通过逆补偿,可在0~200 μm使得控制绝对误差小于0.8 μm;在前馈逆补偿和PID环控制下,绝对误差可小于40 nm,结果验证了算法的有效性。该算法结构简单,适应性强,便于工程实现。

关 键 词:压电陶瓷执行器  Duhem模型  Weierstrass多项式逼近  递推最小二乘法  动态迟滞模型  动态逆迟滞模型  逆补偿
收稿时间:2011-08-05
修稿时间:2011-09-28

Identification and control of dynamic modeling for piezoceramic actuator
CHEN Hui , TAN Yong-hong , ZHOU Xing-peng , ZHANG Ya-hong , DONG Rui-li.Identification and control of dynamic modeling for piezoceramic actuator[J].Optics and Precision Engineering,2012,20(1):88-95.
Authors:CHEN Hui  TAN Yong-hong  ZHOU Xing-peng  ZHANG Ya-hong  DONG Rui-li
Affiliation:1. School of Automation, Southeast University, Nanjing 210096, China;; 2. School of Electronic Engineering & Automation, Guilin University of Electronic Technology, Guilin 541004, China;; 3. College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China;; 4. Department of Information Engineering, Guilin College of Aerospace Technology, Guilin 541004, China
Abstract:The dynamic model and inverse model of a piezoceramic actuator were proposed to improve its control precision in a precision position system. According to the Weierstrass approximation theorem, the polynomials f(·) and g(·) in the Duhem function was developed, and the dynamic modeling of nonlinear parameters of the piezoceramic actuator was given by using recursive least squares to identify the model parameters and polynomial coefficients in the Duhem model. Then, an inverse dynamic modeling of the piezoceramic actuator was established based on identified results to simplify the unknown parameter computation process greatly. Finally, the dynamic inverse compensation was incorporated in a closed-loop PID controller to control the piezoceramic actuator. Experimental results indicate that the maximum absolute error with the inverse compensation is less than 0.8 μm and that with the inverse compensation and PID is less than 40 nm in an amplitude range of 200 μm. The experimental result shows that the proposed identification scheme has improved the nonlinear characteristic of the piezoceramic actuator effectively.
Keywords:piezoceramic actuator  Duhem model  Weierstrass polynomial approximation  recursive least square  dynamic hysteresis model  dynamic inverse model  inverse compensation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光学精密工程》浏览原始摘要信息
点击此处可从《光学精密工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号