首页 | 本学科首页   官方微博 | 高级检索  
     


Improved peptidyl linkers for self-assembly of semiconductor quantum dot bioconjugates
Authors:Lorenzo Berti  Paola Serena D’Agostino  Kelly Boeneman  Igor L. Medintz
Affiliation:(1) CNR-INFM, National Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi, 213/A 41100, Modena, Italy;(2) University of California Davis Medical Center, Sacramento, CA 95817, USA;(3) Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
Abstract:We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots. A hexahistidine peptidyl sequence was generated by standard solid phase peptide synthesis and modified with the succinimidyl ester of iodoacetamide to yield a thiol-reactive iodoacetyl polyhistidine linker. The reactive peptide was conjugated to dye-labeled thiolated DNA which was utilized as a model target biomolecule. Agarose gel electrophoresis and fluorescence resonance energy transfer analysis confirmed that the linker allowed the DNA to self-assemble with quantum dots via metal-affinity driven coordination. In contrast to previous peptidyl linkers that were based on disulfide exchange and were thus labile to reduction, the reactive haloacetyl chemistry demonstrated here results in a more stable thioether bond linking the DNA to the peptide which can withstand strongly reducing environments such as the intracellular cytoplasm. As thiol groups occur naturally in proteins, can be engineered into cloned proteins, inserted into nascent peptides or added to DNA during synthesis, the chemistry demonstrated here can provide a simple method for self-assembling a variety of stable quantum dot bioconjugates. MediaObjects/12274_2009_9008_Fig1_HTML.jpg
Keywords:Semiconductor quantum dot  peptide  DNA  nanocrystal  bioconjugation  iodoacetyl  sulfhydryl  polyhistidine  metal-affinity  fluorescence  fluorescence resonance energy transfer (FRET)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号