首页 | 本学科首页   官方微博 | 高级检索  
     

月度用电量灰色预测改进模型
引用本文:詹卫许,钱淑钗,印鉴. 月度用电量灰色预测改进模型[J]. 南方电网技术, 2012, 6(5): 92-96
作者姓名:詹卫许  钱淑钗  印鉴
作者单位:中国南方电网有限责任公司,广州510623;2.;中山大学 信息科学与技术学院,广州510006;中山大学 信息科学与技术学院,广州510006
基金项目:广东省和广州市科技计划项目(2010A040303004, 11A12050914, 11A31090341, 2011Y5-00004)
摘    要:灰色模型是年度电量预测的有效方法。引入季节指数平滑法改进灰色模型,使其更适合具有季节周期性的月度用电量预测;并提出了一种基于马尔科夫过程的残差修正法,以提高月度电量预测的准确率。最后,以某市月度用电量进行实际预测为例,通过与其他模型的比较,验证了改进模型在月度用电量预测中的有效性。

关 键 词:灰色预测  季节指数  残差修正  月度用电量

An Improved GM(1,1) Model for Monthly Electric Power Consumption Forecasting
ZHAN Weixu,QIAN Shuchai and YIN Jian. An Improved GM(1,1) Model for Monthly Electric Power Consumption Forecasting[J]. Southern Power System Technology, 2012, 6(5): 92-96
Authors:ZHAN Weixu  QIAN Shuchai  YIN Jian
Affiliation:China Southern Power Grid Co.,Ltd, Guangzhou 510623 ,China;School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510006, China;School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510006, China
Abstract:The Grey Model is an effective method for annual electricity forecasting. This paper improves the model with seasonal exponential smoothing for monthly electric power consumption forecasting of the seasonal periodicity.characteristic and proposes an advanced residual error modified method based on Markov Process in order to enhance the forecasting accuracy, Finally, some experiments are carried out using the historical monthly electric power consumption of a city to compare the improved model with some other forecasting models, and it proves that the improved model is more effective than other models in monthly electric power consumption forecasting.
Keywords:grey forecasting   seasonal exponential   residual error modified   monthly electric power consumption
本文献已被 CNKI 等数据库收录!
点击此处可从《南方电网技术》浏览原始摘要信息
点击此处可从《南方电网技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号