首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的三帧差和卡尔曼滤波的车辆检测方法
引用本文:王 彬,龙永红,舒小华,李泉明. 基于改进的三帧差和卡尔曼滤波的车辆检测方法[J]. 湖南工业大学学报, 2012, 26(6): 55-59
作者姓名:王 彬  龙永红  舒小华  李泉明
作者单位:湖南工业大学电气与信息工程学院,湖南株洲,412007
基金项目:湖南省科技计划基金资助项目(2012FJ3038),湖南省高校产业化培育基金资助项目(10CY006)
摘    要:针对卡尔曼滤波方法在车辆检测中存在背景更新参数固定、背景建模实时性较差的问题,提出了三帧差法与自适应卡尔曼滤波算法相结合的运动车辆检测方法.先采用三帧差法快速提取车辆运动区域,再采用高斯分布确定背景更新参数,同时更新背景模型,最后将两者得到的图像相减得到最终检测结果.实验结果表明,该算法的背景更新速度较快,运动目标提取效果较好.

关 键 词:车辆检测  三帧差法  卡尔曼滤波  背景更新
收稿时间:2012-09-20

Vehicles Detection Based on Three-Frame-Difference and Improved Kalman Filter Method
Wang Bin,Long Yonghong,Shu Xiaohua and Li Quanming. Vehicles Detection Based on Three-Frame-Difference and Improved Kalman Filter Method[J]. Journal of Hnnnan University of Technology, 2012, 26(6): 55-59
Authors:Wang Bin  Long Yonghong  Shu Xiaohua  Li Quanming
Abstract:As the existing Kalman Filter used in vehicles detection had some disadvantages of fixed background updating parameters and poor background modeling real-timeliness, proposed an vehicle detection algorithm based on three-frame-difference and adaptive Kalman filter method. Firstly extracted the vehicle motion region by three-frame-difference method, then determined the background updating parameters by Gaussian distribution and updated the background model, lastly obtained final result by the two subtracting image. Experimental result shows that the improved algorithm updates backgrounds quickly and extracts moving targets effectively.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《湖南工业大学学报》浏览原始摘要信息
点击此处可从《湖南工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号