首页 | 本学科首页   官方微博 | 高级检索  
     

点云目标检测残差投票网络
引用本文:杨积升,章云,李东. 点云目标检测残差投票网络[J]. 广东工业大学学报, 2022, 39(1): 56-62. DOI: 10.12052/gdutxb.200176
作者姓名:杨积升  章云  李东
作者单位:广东工业大学 自动化学院,广东 广州 510006
基金项目:国家自然科学基金资助项目(61503084);广东省自然科学基金资助项目(2021A1515011867)
摘    要:高精度的三维目标检测是实现物体感知的关键技术,对自动驾驶、机器人控制等应用的落地具有重要意义.为提高三维目标检测的精度,对算法VoteNet改进,提出了一种基于残差网络的端到端的高精度三维点云目标检测网络ResVoteNet.具体来说,设计了适用于点云数据的残差网络骨架,提出了残差特征提取模块以及残差上采样模块,并集成...

关 键 词:三维点云  目标检测  残差网络
收稿时间:2020-12-30

A Residual Neural Network with Voting for 3D Object Detection in Point Clouds
Yang Ji-sheng,Zhang Yun,Li Dong. A Residual Neural Network with Voting for 3D Object Detection in Point Clouds[J]. Journal of Guangdong University of Technology, 2022, 39(1): 56-62. DOI: 10.12052/gdutxb.200176
Authors:Yang Ji-sheng  Zhang Yun  Li Dong
Affiliation:School of Automation, Guangdong University of Technology, Guangzhou 510006, China
Abstract:High-precision 3D object detection is a key technology to realize object perception, which is of great significance to the implementation of applications such as automatic driving and robot control. In order to improve the accuracy of 3D object detection, the algorithm VoteNet is improved, and an end-to-end high-precision 3D point cloud target detection network based on residual network, ResVoteNet is proposed. Specifically, a residual network skeleton suitable for point cloud data is designed, and a residual feature extraction module and a residual up-sampling module are proposed and integrated into the VoteNet framework. The introduction of the residual network structure enhances the network's feature extraction and learning capabilities for point cloud data, and improves the robustness of the model. The algorithm is tested on the publicly available large-scale point cloud data sets SCANNET and SUN-RGBD, and the average detection accuracy mAP has reached 61.1% and 59.9%, respectively, surpassing other current state-of-the-art algorithms.
Keywords:3D point cloud  object detection  residual network  
本文献已被 万方数据 等数据库收录!
点击此处可从《广东工业大学学报》浏览原始摘要信息
点击此处可从《广东工业大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号