首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机数三角阵映射的高维大数据二分聚类初始中心高效鲁棒生成算法
引用本文:李旻,何婷婷. 基于随机数三角阵映射的高维大数据二分聚类初始中心高效鲁棒生成算法[J]. 电子与信息学报, 2022, 43(4): 948-955. DOI: 10.11999/JEIT200043
作者姓名:李旻  何婷婷
作者单位:华中师范大学国家数字化学习工程技术研究中心,武汉,430079;河南大学计算机与信息工程学院,开封,475001
摘    要:Bisecting K-means算法通过使用一组初始中心对分割簇,得到多个二分聚类结果,然后从中选优以减轻局部最优收敛问题对算法性能的不良影响。然而,现有的随机采样初始中心对生成方法存在效率低、稳定性差、缺失值等不同问题,难以胜任大数据聚类场景。针对这些问题,该文首先创建出了初始中心对组合三角阵和初始中心对编号三角阵,然后通过建立两矩阵中元素及元素位置间的若干映射,从而实现了一种从随机整数集合中生成二分聚类初始中心对的线性复杂度算法。理论分析与实验结果均表明,该方法的时间效率及效率稳定性均明显优于常用的随机采样方法,特别适用于高维大数据聚类场景。

关 键 词:Bisecting K-means  初始中心生成  三角矩阵映射  随机整数  高维大数据聚类  线性算法

An Efficient and Robust Algorithm to Generate Initial Center of Bisecting K-means for High-dimensional Big Data Based on Random Integer Triangular Matrix Mappings
LI Min,HE Tingting. An Efficient and Robust Algorithm to Generate Initial Center of Bisecting K-means for High-dimensional Big Data Based on Random Integer Triangular Matrix Mappings[J]. Journal of Electronics & Information Technology, 2022, 43(4): 948-955. DOI: 10.11999/JEIT200043
Authors:LI Min  HE Tingting
Abstract:The algorithm of Bisecting K-means obtains multiple clustering results by using a set of initial center pairs to segment a cluster, and then selects the best from them to mitigate the adverse effect of the local optimal convergence on the performance of the algorithm. However, the current methods of random sampling to generate initial center pairs for Bisecting K-means have some problems, such as low efficiency, poor stability, missing values and so on, which are not competent for big data clustering. In order to solve these problems, firstly the lower triangular matrix composed by the pairs of initial centers and the lower triangular matrix composed by serial numbers of the pairs of initial centers are created. Then, by establishing several mappings between the elements and their positions in the two matrices, a linear complexity algorithm is proposed to generate initial center pairs from the set of random integers. Both theoretical analysis and experimental results show that the time efficiency and efficiency stability of this method are significantly better than the current methods of random sampling, so it is particularly suitable for these scenarios of high-dimensional big data clustering.
Keywords:Bisecting K-means  Initial center generation  Triangular matrix mapping  Random integer  High-dimensional big data clustering  Linear algorithm
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号