首页 | 本学科首页   官方微博 | 高级检索  
     

基于MapReduce的公路视频图像车型分类研究*
引用本文:许晓珑,丁 箐,白 天,叶 勇,石 竹. 基于MapReduce的公路视频图像车型分类研究*[J]. 电视技术, 2016, 40(3): 111-115. DOI: 10.16280/j.vide0e.2016.03.024
作者姓名:许晓珑  丁 箐  白 天  叶 勇  石 竹
作者单位:1. 福建省厦门市公路局信息处,福建厦门,361008;2. 中国科学技术大学软件学院,安徽合肥,230051
基金项目:国家自然科学基金项目(面上项目)
摘    要:分析公路视频图像,从而对经过的车辆进行较高精度的分类,是一个颇且实用价值的课题.如何在保证分类精度的同时提高系统性能,无疑是一个具有挑战性的任务.提出了一个多特征融合的分类框架,结合车辆的全局几何特征、SIFT局部特征,以及Gabor纹理特征对车辆进行分类,提高了分类精度;为了提高系统的性能,设计了基于MapReduce的并行算法,通过对图像分块,实现数据并行.实验结果表明,该方案能够在提高分类精度的基础上仍然保持较高的系统性能.

关 键 词:车型分类  多特征融合  MapReduce
收稿时间:2015-07-22
修稿时间:2015-09-02

Vehicle Classification based on Highway Video Using MapReduce Programming Model
XU LongLong,DINGQing,BAI Tian,YE Yong and SHI Zhu. Vehicle Classification based on Highway Video Using MapReduce Programming Model[J]. Ideo Engineering, 2016, 40(3): 111-115. DOI: 10.16280/j.vide0e.2016.03.024
Authors:XU LongLong  DINGQing  BAI Tian  YE Yong  SHI Zhu
Affiliation:Information Office,highway administration of Xiamen,School of Software Engineering,University of Science and Technology of China,School of Software Engineering,University of Science and Technology of China,School of Software Engineering,University of Science and Technology of China,School of Software Engineering,University of Science and Technology of China
Abstract:Vehicle classification with a higher accuracy based on highway video, using image analysis technology is a very valuable subject. However, how to improve system performance while ensuring the classification accuracy is undoubtedly a challenging task. Since both global features and local features are essential to classification, this paper presents a multi-feature fusion classification framework, which combines with global geometric features, SIFT, and gabor local features to improve the classification accuracy. In order to improve system performance, a parallel algorithm based on MapReduce programming model is designed. Experimental results show that this scheme can improve the classification accuracy and still maintain a high system performance.
Keywords:Vehicle Classification   multi-feature fusion   MapReduce
本文献已被 万方数据 等数据库收录!
点击此处可从《电视技术》浏览原始摘要信息
点击此处可从《电视技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号