首页 | 本学科首页   官方微博 | 高级检索  
     


Heat-Transfer Measurements in the Primary Cooling Phase of the Direct-Chill Casting Process
Authors:Etienne J F R Caron  Amir R Baserinia  Harry Ng  Mary A Wells  David C Weckman
Affiliation:1. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
2. Harvistor Canada, Picton, ON, K0K 2T0, Canada
3. Thumbprint Solutions, Stouffville, ON, L4A 7X5, Canada
Abstract:Thermal modeling of the direct-chill casting process requires accurate knowledge of (1) the different boundary conditions in the primary mold and secondary direct water-spray cooling regimes and (2) their variability with respect to process parameters. In this study, heat transfer in the primary cooling zone was investigated by using temperature measurements made with subsurface thermocouples in the mold as input to an inverse heat conduction algorithm. Laboratory-scale experiments were performed to investigate the primary cooling of AA3003 and AA4045 aluminum alloy ingots cast at speeds ranging between 1.58 and 2.10 mm/s. The average heat flux values were calculated for the steady-state phase of the casting process, and an effective heat-transfer coefficient for the global primary cooling process was derived that included convection at the mold surfaces and conduction through the mold wall. Effective heat-transfer coefficients were evaluated at different points along the mold height and compared with values from a previously derived computational fluid dynamics model of the direct-chill casting process that were based on predictions of the air gap thickness between the mold and ingot. The current experimental results closely matched the values previously predicted by the air gap models. The effective heat-transfer coefficient for primary cooling was also found to increase slightly with the casting speed and was higher near the mold top (up to 824 W/m2·K) where the molten aluminum first comes in contact with the mold than near the bottom (as low as 242 W/m2·K) where an air gap forms between the ingot and mold because of thermal contraction of the ingot. These results are consistent with previous studies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号