首页 | 本学科首页   官方微博 | 高级检索  
     


Caracterisation de la matiere organique dissoute presente dans les eaux en cours d'affinage: Influence des traitements appliques et du climat
Authors:M Jarret  C Cavelier  C Ducauze
Abstract:Dissolved organic matter in treated surface waters (clarified, possibly ozonized, then GAC-filtered, Fig. 1), is fractionated by ultrafiltration into five molecular classes with MW < 300, 300–1000, 1000–5000, 5000–10000 or > 10,000. Dissolved organic carbon (DOC), oxidizability by KMnO4 in hot alkaline medium and u.v. absorbances at 240, 254, 280, 300 nm are measured. Fourteen series of samples, distributed on an annual biological cycle are analysed (Figs 2 and 3); multivariate statistical analyses are performed.By PCA (principal component analysis), variations in water supplying the activated carbon units appear to depend for 47% on ozonation and temperature; but river flow rate and quantity of flocculant added are no longer responsible for such variations (Fig. 4). Three groups of water appear (Fig. 5), according to the applied ozone level (zero, medium, high); among the medium ozonized waters, the cold ones differ from temperate ones.Ozonation diminishes molecular size of compounds (Table 1): three major classes with MW < 5000 are present in non- or medium-ozonized waters, but only two, with MW < 1000, remain in highly ozonized waters. This treatment destroys MW > 10,000 and even 1000–5000 ones and yields MW < 300 products; it also minimizes u.v. absorbances and oxidizability. Seasonal variations occur in DOC content of medium ozonized waters, with maxima values in winter or spring and minima in summer or autumn (Fig. 6): occurrence of MW < 300 compounds follows that of DOC, but the presence of 5000–10000 ones is minimal in winter.Quality of GAC-filtered waters varies by 19% with temperature (Fig. 7); ozonation effects are minimized: only previously highly ozonized waters distinguished themselves from the others (Fig. 8). Waters, non or medium ozonized before GAC-filtration, are divided into cold, temperate and warm waters. One, two or three major classes of compounds with MW < 5000, remain in GAC-filtered waters, according to the ozone level applied previously. This filtration reduces DOC by 17%, decreases u.v. absorbances and oxidizability and gives water with the same 0.30 mg O2 mg−1 C ratio (Table 2): MW 1000–5000 class is much less oxidizable after ozonation-GAC filtration but, on the other hand, MW < 300 class appears rather less oxidizable without ozonation before biological filtration. DOC content in effluent follows that in influent (Fig. 9), but variations are less marked. Total efficiency of the filtration increases with temperature, but behaviour of compounds differs from one class to another: MW 300–1000 and 5000–10000 classes are the most affected; MW 1000–5000 is not really modified. Elimination of MW < 300 or 5000–10000 compounds depends on temperature and may be due to biological phenomena, a but that of 1000–5000 and > 10,000 classes, independent of this parameter, may be related to adsorption mechanisms.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号