首页 | 本学科首页   官方微博 | 高级检索  
     


Onset of Marangoni instability of a two-component evaporating droplet
Authors:Vai-Meng Ha  Chun-Liang Lai  
Affiliation:

Department of Mechanical Engineering, National Taiwan University, Taipei 106, Taiwan, ROC

Abstract:The temperature and solute concentration reductions across a thin boundary layer near the free surface of an evaporating droplet may induce cellular flow motion in the droplet because of Marangoni instability. The present study is aimed at investigating theoretically the onset of Marangoni instability due to the evaporation of a two-component evaporating droplet.

With the quasi-steady approximation which means that the surrounding gas motion is asymptotically steady, the size change of the droplet is negligible, and the temperature and concentration distributions of the droplet are temporarily frozen at each specified instant of interest, the onset condition for Marangoni instability is obtained through the linear stability analysis.

By assuming the surface tension is a monotonically decreasing function of both temperature and concentration of the higher-volatility substance, the thermocapillary and diffuso-capillary effects augment each other. Therefore, the theoretical analysis predicts a linear relation, with a negative slope, between the onset thermal Marangoni number, MaT, and the onset solute Marangoni number, MaS. Moreover, when liquid Lewis number Lel>1, the critical wave number, lc, may possess different values depending on the variation of the thermocapillary effect and diffuso-capillary effect. In addition, Lel has a stronger effect on the critical solute Marangoni number MaS,C, than on the critical thermal Marangoni number MaT,C. That is, as Lel decreases, MaT,C decreases mildly while MaS,C increases drastically.

Keywords:Marangoni instability  Evaporation  Thermocapillary  Diffuso-capillary
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号