首页 | 本学科首页   官方微博 | 高级检索  
     


Test of conductor and semiconductor electrocatalysts in high voltage alkaline electrolyzer as production media for green hydrogen
Affiliation:Department of Energy Engineering, University of Baghdad, Baghdad 10071, Iraq
Abstract:Despite the restricted success of conductor and semiconductor electrodes in solving hydrogen production problems, they provide a promising alternative to expensive conventional electrodes in water electrolysis investigations. Titanium dioxide (TiO2) and silver (Ag) are widely used as photocatalysts in water splitting systems for hydrogen generation. Though TiO2 is an inactive chemical semiconductor with poor conductivity, it has not been entirely investigated as an electrocatalyst yet. Two criteria were used to achieve this target: supplying high voltage to overcome the TiO2 large band gap and immersing it in an alkaline solution to activate its inert surface. For comparison study, Ag noble metal nanoparticles coating was employed as a competitive electrocatalyst. In this regard, the application of Ag and TiO2 coated on Ti electrodes in a hydrogen production system operated under high voltage was reported. The nanoparticles were synthesized using cost-effective and simple methods based on UV-deposition for Ag nanoparticles and the chemical precipitation method for TiO2 nanoparticles. Then the synthesized nanoparticles were deposited on the Ti electrodes by simple immersion. The synthesized nanoparticles and coated electrodes were tested by XRD, SEM, and EDS to study their morphology, structure, particle size, and surface composition. Based on these results, TiO2 nano-powder and coated electrodes exhibited homogenous spheres with a mixture of rutile and anatase phases, the majority being the anatase phase. The Ag-coated Ti substrate possessed a smaller crystallite size compared to TiO2 coated substrate. To evaluate the performance of Ag/Ti and TiO2/Ti electrodes toward hydrogen production, H2 flow rates were measured in a 3.6 M KOH electrolytic solution at 6 V. Hydrogen flow rates obtained for pure Ti, Ag, and TiO2 electrodes at a steady state were 21, 35, and 37 SCCM (standard cm3/min), respectively. Also, it was found that energy consumption was reduced when the electrodes were coated with nanoparticles. Furthermore, the electrolyzer's performance was assessed by calculating the hydrogen production efficiency and the voltage efficiency. The results showed that using TiO2 electrodes gave the best hydrogen production and voltage efficiencies of 27% and 23%, respectively. This study brings new insights about Ag and TiO2 coated electrodes in alkaline water electrolysis at high voltage regarding nanoparticle performance, hydrogen production, system performance, and energy consumption. In addition, minimizing the fabrication and operation costs of hydrogen production is the major enabler for the broad commercialization of water electrolysis devices.
Keywords:Alkaline electrolysis  Nanoparticles catalysts  Hydrogen production  High voltage  Semiconductor electrode
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号