首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation of chitosan-sodium alginate/bioactive glass composite cartilage scaffolds with high cell activity and bioactivity
Affiliation:1. School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China;2. Zhonghaohua Engineering Management Consulting Co., Ltd., Henan, PR China
Abstract:Chitosan-sodium alginate/bioactive glass (CSB) composite cartilage scaffold with outstanding in vitro mineralization property and cytocompatibility is synthesized by freeze drying method. The effect of bioactive glass (BG) addition on the microstructure, porosity, swelling/degradation ratio, in vitro mineralization property and cytocompatibility of CSB scaffold is investigated by the characterization techniques of SEM, XRD, FTIR and BET. Results showed that CSB composite cartilage scaffold had a three-dimensional (3D) porous structure, and both porosity and average pore size met the requirements of cartilage tissue repair. Among, the typical CSB-1.0 had the largest overall pore size and lowest compressive modulus (1.083 ± 0.002 MPa). As the amount of BG increased, pore volume and porosity of CSB scaffolds gradually decreased, and the swelling and degradation ratios gradually reduced. After immersing in SBF for 3 d, cauliflower like hydroxyapatite (HA) was formed on CSB surface, indicating that the scaffold had good in vitro mineralization property. Moreover, the introduction of BG into the composite scaffold can improve the relative cell viability of MC3T3-E1 cells, and CSB-1.0 has the strongest ability to promote the proliferation of cells. Therefore, the as-obtained CSB scaffold can be used as a strong candidate for cartilage tissue engineering scaffold to meet clinical needs.
Keywords:CBS composite Cartilage scaffold  Vitro mineralization property  Cytocompatibility  Freeze-drying method  Cartilage tissue engineering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号