首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement of energy storage properties of NaNbO3-based ceramics through the cooperation of relaxation and oxygen vacancy defects
Affiliation:1. State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China;2. Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, 521000, China
Abstract:The development of materials with high energy storage plays a crucial role in solving energy consumption. Traditional dielectric ceramics have the disadvantages of low energy storage and low efficiency. The most effective solution is to reduce the dielectric loss and increase the breakdown strength. In this paper, (Na0.73Bi0.08Sm0.01)(Nb0.91Ta0.09)O3 relaxor ferroelectric ceramics were prepared, which achieved a high energy storage density of 1.66 J cm?3, high efficiency (83.6%) at 214 kV/cm at room temperature. The addition of Bi2O3 makes the A site cations disordered, thereby generating random fields, breaking the long-range order, and forming polar nanodomains. That allows the ceramic to acquire relaxation properties, reducing the dielectric loss. The impedance analysis proves that the breakdown strength is related to the addition of Sm2O3. The addition of Sm reduces the oxygen vacancy defect concentration and inhibits the migration of carriers, thereby improving its breakdown strength. Through proper doping of Bi and Sm, the relaxation properties and breakdown field strength of the ceramics are enhanced to obtain excellent energy storage performance. This provides a new idea in terms of relaxation and oxygen vacancy defects for NaNbO3-based energy storage ceramics.
Keywords:Relaxor behavior  Oxygen vacancy defects  Energy storage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号