首页 | 本学科首页   官方微博 | 高级检索  
     


Development of bifunctional Mo doped ZnAl2O4 spinel nanorods array directly grown on carbon fiber for supercapacitor and OER application
Affiliation:1. Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia;2. Department of Chemistry, Government College University Lahore, Katchery Road, Anarkali, Lahore, Punjab, 54000, Pakistan;3. Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan;4. Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan;5. Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Abu Dhabi Road, Rahim Yar Khan, 64200, Pakistan;6. Department of Chemistry, Government Murray College, Sialkot, 51141, Pakistan
Abstract:Electrochemical energy storage and water splitting strategies may be greatly improved with proper structural design and doping techniques. In the present study, molybdenum-doped ZnAl2O4 loaded on carbon fiber (Mo–ZnAl2O4/CF) was fabricated via a simple hydrothermal synthetic approach. Due to its unique hierarchical nanostructures and enhanced electrical, structural topologies, Mo-doped ZnAl2O4 demonstrates exceptional supercapacitor performance and electrocatalytic oxygen evolution reaction activity. The Mo-doped ZnAl2O4 electrode material exhibited 1477.63 F g?1 specific capacitance, 46.57 Wh Kg?1 specific energy and specific power of 476.4 W kg?1 at 1 A g?1. After 5000 cycles, the pseudo supercapacitor retains 97.46% of its capacitance and displays stable behavior over 50 h. During the OER reaction, the Mo–ZnAl2O4/CF as an electrocatalyst rapidly self-reconstructs, resulting in many oxygen vacancies, and causes a lower 38 mV dec?1 Tafel slope and overpotential potential of 255 mV to achieved 10 mA cm?2 current flow and responsible for the excellent stability of the electrocatalyst. These findings suggest that multifunctional materials based electrode for electrical energy conversion and storage become more efficient and stable by using Mo for doping to generate porous hierarchical structures and local amorphous phases.
Keywords:Hydrothermal  Carbon fiber  Electrocatalyst supercapacitors  Oxygen evolution reaction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号