首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen storage in gas reservoirs: A molecular modeling and experimental investigation
Affiliation:1. Gas Processing Center, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar;2. Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713 Doha, Qatar;3. Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia;4. Chemical Engineering Department, University of Jordan, Amman, Jordan;5. Department of Chemistry, University of Burgos, 09001 Burgos, Spain
Abstract:Hydrogen is one of the clean energy sources that can be used instead of fossil fuel sources to reduce greenhouse emissions. However, hydrogen supply intermittency significantly reduces the deployment and reliability of this energy resource. Therefore, this work investigates the underground storage of hydrogen in depleted gas reservoirs to avoid seasonal fluctuations in hydrogen supply and assure long-term energy security. The obtained results from molecular simulation (Density Functional Theory) revealed hydrogen is adsorbed physically on calcite (104) and silica (001) surfaces on different adsorption configurations. This conclusion is supported by low adsorption energies (?0.14 eV for calcite and ?0.09 for silica) and by Bader charge analysis, which showed no indication of charge transfer. The experimental results illustrated that hydrogen has a very low adsorption affinity toward carbonate and sandstone rocks in the temperature range of 50–100 °C and pressure up to 20 bar. These results show the potential of depleted gas reservoirs to store hydrogen for s is useful in hydrogen recovery as no hydrogen will be adsorbed to the rock surface of conventional gas reservoirs.
Keywords:Hydrogen storage  Hydrogen adsorption  Depleted gas reservoirs  Molecular simulation  Density functional theory  Calcite
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号