首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and formation mechanism of Cr-free spinel-structured high entropy oxide (MnFeCoNiCu)3O4
Affiliation:1. School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China;2. Songshan Lake Materials Laboratory, Dongguan, 523808, PR China
Abstract:In this work, two Cr-free high entropy oxides (HEOs), an equimolar (MnFeCoNiCu)3O4 and a non-equimolar (Mn0.272Fe0.272Co0.272Ni0.092Cu0.092)3O4 have been synthesized by a solid-state reaction method. The reaction sequence and electrical conductivity were also studied for these two HEOs. It is demonstrated that a rock-salt phase containing a solid solution of NiO and CuO appears in the synthesizing process of (MnFeCoNiCu)3O4, which is ascribed to the incomplete solubilization of rock-salt phase in the spinel phase. For (Mn0.272Fe0.272Co0.272Ni0.092Cu0.092)3O4, a single spinel phase (Fd-3m) is obtained at 750 °C, which is much lower than that of the (MnFeCoNiCu)3O4 sample. Furthermore, Mn, Fe, Co, Ni elements exist in the chemical states of +2 and + 3, and Cu exists in Cu2+ state. The electrical conductivity of (Mn0.272Fe0.272Co0.272Ni0.092Cu0.092)3O4 is approximately 15.77 S cm-1 at 800 °C, which is nearly three times higher than that of the (MnFeCoNiCu)3O4 sample.
Keywords:High-entropy oxides  Spinels  Microstructure  Phase evolution  Electrical conductivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号