首页 | 本学科首页   官方微博 | 高级检索  
     


Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA
Authors:Xu Jianlin  Trimble John J  Steinberg Lisa  Logan Bruce E
Affiliation:Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA.
Abstract:The effect of nitrate on perchlorate and chlorate reduction by perchlorate-respiring bacteria (PRB), and on chlorate reduction by chlorate-respiring bacteria (CRB), is not well understood, particularly with respect to the induction of pathways used to degrade these different chemicals. Based on kinetic data obtained in a series of batch tests, we determined that perchlorate respiratory enzymes were inducible (by chlorate or perchlorate) and separate from those used for denitrification by PRB strain Dechlorosoma sp. KJ. Aerobically grown cultures of KJ had lag times of greater than 0.3-2 days when transferred to a medium containing only perchlorate, chlorate, or nitrate as an electron acceptor. There were no lag times for transfers between identical media. Washed cells reduced very little nitrate (<10%) when grown only on chlorate or perchlorate. When grown on nitrate, they degraded little chlorate or perchlorate. The same lack of activity with these electron acceptors was also observed using cell extracts and methyl viologen as an electron carrier, indicating a lack of reactivity was not due to failure of the chemical to diffuse into the cell. Taken together, these results indicated that enzymes for perchlorate and nitrate reduction are separately expressed in strain KJ. The presence of small amounts of nitrate in contaminated groundwater may actually help to increase rates of perchlorate reduction once the nitrate is completely removed. When strain KJ was pre-grown on nitrate and perchlorate, perchlorate degradation (in the absence of nitrate) was more rapid compared to cells grown only on perchlorate. Pseudomonas sp. PDA was unable to degrade perchlorate or grow using nitrate, and the induction of enzymes necessary for chlorate respiration differed for strains KJ and PDA. While chlorate reductase and chlorite dismutase activity were induced in KJ by chlorate or perchlorate under anaerobic conditions, these two enzymes were constitutively expressed by PDA under anaerobic and aerobic conditions independent of the presence of chlorate. To our knowledge, this is the first report of constitutive expression of both chlorate reductase and chlorite dismutase in a bacterium.
Keywords:Rocket propellent  Biodegradation  Perchlorate  Chlorate  Nitrate  Anaerobic respiration
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号