首页 | 本学科首页   官方微博 | 高级检索  
     

轴向变速黏弹性Rayleigh梁非线性参数振动稳态响应
引用本文:丁虎,陈立群,. 轴向变速黏弹性Rayleigh梁非线性参数振动稳态响应[J]. 振动与冲击, 2012, 31(5): 135-138. DOI:  
作者姓名:丁虎  陈立群  
作者单位:1. 上海大学,上海市应用数学和力学研究所,上海200072,2. 上海大学力学系,上海200444,
基金项目:国家杰出青年科学基金(10725209);国家自然科学基金项目(10902064);上海市教育委员会科研创新项目(12YZ028);上海市重点学科建设项目(S30106);上海市青年科技启明星计划(11QA1402300)资助
摘    要:研究非线性轴向运动黏弹性Rayleigh梁因速度周期变化产生的亚谐波共振。轴向运动速度在平均速度附近做简谐周期性脉动。通过取物质导数的Kelvin本构关系描述Rayleigh梁的黏弹性。运用多尺度近似解析方法,构建轴向运动Rayleigh梁的非线性偏微分方程的可解性条件,分析参数振动稳态响应的振幅与扰动速度频率关系。并运用微分求积方法直接离散非线性Rayleigh梁的控制方程,以验证近似解析方法分析。通过数值算例,分析了系统参数对稳态响应曲线的影响。

关 键 词:Rayleigh梁   非线性   黏弹性   稳态响应   多尺度方法   
收稿时间:2011-08-30

Steady state response of nonlinear vibration of an axially accelerating viscoelastic Rayleigh beam
DING Hu,HU Chao-rong,CHEN Li-qun,JIANG Hai-yan. Steady state response of nonlinear vibration of an axially accelerating viscoelastic Rayleigh beam[J]. Journal of Vibration and Shock, 2012, 31(5): 135-138. DOI:  
Authors:DING Hu  HU Chao-rong  CHEN Li-qun  JIANG Hai-yan
Affiliation:1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China;2. Department of Mechanics, Shanghai University, Shanghai 200444, China;3. School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei, 230009, China
Abstract:The sub-harmonic resonance of an axially accelerating nonlinear viscoelastic Rayleigh beam was investigated via an approximate analytical method and verified via the differential quadrature method.The mathematical model of transverse vibration of an infinitesimal beam was established with variation calculus.The axial speed was characterized as a simple harmonic variation about the constant mean speed.The solvable conditions of parametric vibration for sub-harmonic resonance were established via the method of multiple scales.Therefore,the steady state periodic response was presented for an accelerating viscoelastic Rayleigh beam with simple supports boundary conditions.With numerical examples the effects of the nonlinear coefficient and the viscoelastic coefficient on the steady state response were studied individually.The differential governing equation for transverse vibration of an axially moving slender Rayleigh beam was numerically solved via the differential quadrature method.The numerical calculations confirmed the analytical results.Numerical examples demonstrated that the approximate analytical results have rather high precision.
Keywords:Rayleigh beam  parametric resonance  nonlinear  multi-scale method  differential quadrature method
本文献已被 CNKI 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号