首页 | 本学科首页   官方微博 | 高级检索  
     


Low-cycle fatigue characteristics of Sn-based solder joints
Authors:K O Lee  Jin Yu  T S Park  S B Lee
Affiliation:(1) Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 305-701 Daejon, South Korea;(2) Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, South Korea
Abstract:Low-cycle, lap-shear fatigue behavior of Sn-based, Pb-free solder alloys, Sn-3.5Ag, Sn-3.5Ag-Cu, Sn-3.5Ag-Bi, and Sn-0.7Cu, were studied at room temperature using specimens with printed circuit board (PCB)/solder/PCB structure under total displacement of ±10 μm, 12 μm, 15 μm, and 20 μm. The fatigue lives of various solder joint materials, defined as 50% load drop, were correlated with the fracture paths and analyzed using the Coffin-Manson relation, Morrow’s plastic-energy dissipation model, and Solomon’s load-drop parameter. The Sn-3.5Ag, Sn-0.7Cu eutectics, and Sn-3.5Ag-Cu ternary alloys showed the same level of fatigue resistance, while Bi-containing alloys showed substantially worse fatigue properties. Cross-sectional fractography revealed cracks initiated at the solder wedge near the solder mask and subsequently propagated into the solder matrix in the former group of alloys, in contrast with the crack propagation along the solder/under bump metallurgy (UBM) interfaces in the Sn-3.5Ag-Bi alloys. Inferior fatigue resistance of Bi-containing alloys was ascribed to high matrix hardness, high stiffness, possible Bi segregation to the interface, and high residual stress in the interfacial area.
Keywords:Low-cycle fatigue  lead-free solder  Coffin-Manson relationship  Morrow energy mode  Solomon parameter
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号