首页 | 本学科首页   官方微博 | 高级检索  
     


Throughput analysis of CDMA systems using multiuser receivers
Authors:Qingchong Liu En-Hui Yang Zhen Zhang
Affiliation:Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA;
Abstract:Throughput bounds are attained for random channel access multichannel code-division multiple-access (CDMA) systems and spread slotted Aloha systems employing multiuser receivers. It is shown that the normalized throughput of these two systems reaches 1.0 exponentially fast in the region r/K<1, where, r is the average number of simultaneous users in each channel in the random channel access multichannel CDMA system and the packet arrival rate in the spread slotted Aloha system, respectively, and K is the maximum number of users which the multiuser receiver can handle at the same time. Therefore, both of the random channel access multichannel CDMA system and the spread slotted Aloha system employing multiuser receivers can achieve perfect throughput while being stable in the region r/K=1-δ, δ>0. The maximum throughput of the random channel access multichannel CDMA systems is found as K-√(1-(1/M))KlogK-O(logK), where M is the number of channels in the system. The maximum throughput is reached when the average number of simultaneous users is rm=K-√((1-(1/M))KlogK))+O(√(K/logK)). The maximum throughput of the spread slotted Aloha systems is K-√(KlogK)-O(log K). The maximum throughput is reached when the packet arrival of Poisson distribution has the arrival rate λm=K-√(KlogK)+O(√(K/logK))
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号