首页 | 本学科首页   官方微博 | 高级检索  
     

改进的互信息最小化非线性盲源分离算法
引用本文:杨杰明,齐厚颖. 改进的互信息最小化非线性盲源分离算法[J]. 电测与仪表, 2015, 52(9)
作者姓名:杨杰明  齐厚颖
作者单位:东北电力大学信息工程学院,吉林吉林,132012
基金项目:吉林省科技发展计划项目
摘    要:提出了一种改进的互信息量最小化非线性盲源分离算法,改善了优化算法在串音误差方面大等的不足。该方法利用自然梯度优化算法来优化目标函数,避免了对矩阵的求逆计算,减少了计算时间。此外,在网络参数优化的过程中引入了扰动信号,提高了非线性盲源分离算法的寻优能力。实验结果表明改进的非线性盲源分离算法是有效的,而且相对传统的非线性盲源分离方法具有较小的误差。

关 键 词:非线性盲源分离  互信息  自然梯度  扰动信号
收稿时间:2014-02-24
修稿时间:2014-02-24

Improved Mutual Information Minimization AlgorithmFor Nonlinear Blind Source Separation
YANG Jie-ming and QI Hou-ying. Improved Mutual Information Minimization AlgorithmFor Nonlinear Blind Source Separation[J]. Electrical Measurement & Instrumentation, 2015, 52(9)
Authors:YANG Jie-ming and QI Hou-ying
Affiliation:School of Information and Communication Engineering,Northeast Dianli University,School of Information and Communication Engineering,Northeast Dianli University
Abstract:This paper presents an improved mutual information minimization algorithm for nonlinear blind source separation,perfects the optimization algorithm in terms of the crosstalk error(ECT) big,etc.The method uses the natural gradient optimization algorithm to optimize the objective function,this can avoid the matrix inversion calculation and reduce the computing time.Focus is on the introduction of disturbance signals in the network to optimize the process parameters.It prevents stagnation in the late algorithm,improves the ability of the optimization of nonlinear blind source separation algorithm.Experimental results show that the proposed nonlinear blind source separation optimization algorithm is a good algorithm,obtains effective,stable separation results.The experiment proves that the new optimization algorithm is superior to the traditional optimization algorithm.
Keywords:nonlinear blind source separation  mutual information  natural gradient  disturbance signal
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号