首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulation of a blanket cooling system for fusion reactor based on PWR conditions
Authors:Changle Liu  Jianzhong Zhang  Yinfeng Zhu  Songlin Liu  Xuebin Ma  Peiming Chen
Affiliation:1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China;2. School of Mechanical and Electrical Engineering, Anhui University of Architecture, Hefei 230601, China;3. School of Nuclear Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract:The simulations of a blanket cooling system were presented to address the choice of cooling channel geometry and coolant input data which are related to blanket engineering implementation. This work was performed using computer aided design (CAD) and computational fluid dynamics (CFD) technology. Simulations were carried out for the blanket module with a size of 0.6 m × 0.45 m in toroidal plane, and the nuclear heat was applied on the cooling system at Pn (neutron wall load) of 5 MW/m2. The structure factors and input data of hydraulics were investigated to explore the optimal parameters to match the PWR condition. It was found that the inlet velocity of first wall (FW) channel should be within the range of 2.48–3.34 m/s. As a result, the temperature rise (TR) of the coolant in the FW channel would be 24–25 K. This leads to the remaining space for TR within the range of 15 K in the piping circuits. It also indicated that the FW plays an important role in TR (reaches 60% of the whole cooling system) due to its high level of Pn and heat flux in the zones. It was predicted that the nuclear heat inside blanket module could be removed completely by the piping circuits with an acceptable pipe bore and the related input data. Finally, a possible design range of cooling parameters was proposed in view of engineering feasibility and blanket neutronics design.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号