首页 | 本学科首页   官方微博 | 高级检索  
     


Stable calculation of Gaussian-based RBF-FD stencils
Authors:Bengt Fornberg  Erik Lehto  Collin Powell
Affiliation:1. University of Colorado, Department of Applied Mathematics, 526 UCB, Boulder, CO 80309, USA;2. Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, CO 80305, USA
Abstract:Traditional finite difference (FD) methods are designed to be exact for low degree polynomials. They can be highly effective on Cartesian-type grids, but may fail for unstructured node layouts. Radial basis function-generated finite difference (RBF-FD) methods overcome this problem and, as a result, provide a much improved geometric flexibility. The calculation of RBF-FD weights involves a shape parameter ε. Small values of ε (corresponding to near-flat RBFs) often lead to particularly accurate RBF-FD formulas. However, the most straightforward way to calculate the weights (RBF-Direct) becomes then numerically highly ill-conditioned. In contrast, the present algorithm remains numerically stable all the way into the ε0 limit. Like the RBF-QR algorithm, it uses the idea of finding a numerically well-conditioned basis function set in the same function space as is spanned by the ill-conditioned near-flat original Gaussian RBFs. By exploiting some properties of the incomplete gamma function, it transpires that the change of basis can be achieved without dealing with any infinite expansions. Its strengths and weaknesses compared with the Contour-Padé, RBF-RA, and RBF-QR algorithms are discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号