首页 | 本学科首页   官方微博 | 高级检索  
     


A micro‐mechanical damage model based on gradient plasticity: algorithms and applications
Authors:Jian Chen  Huang Yuan
Abstract:As soon as material failure dominates a deformation process, the material increasingly displays strain softening and the finite element computation is significantly affected by the element size. Without remedying this effect in the constitutive model one cannot hope for a reliable prediction of the ductile material failure process. In the present paper, a micro‐mechanical damage model coupled to gradient‐dependent plasticity theory is presented and its finite element algorithm is discussed. By incorporating the Laplacian of plastic strain into the damage constitutive relationship, the known mesh‐dependence is overcome and computational results are uniquely correlated with the given material parameters. The implicit C1 shape function is used and can be transformed to arbitrary quadrilateral elements. The introduced intrinsic material length parameter is able to predict size effects in material failure. Copyright © 2002 John Wiley & Sons, Ltd.
Keywords:micro‐mechanical damage model  non‐local damage model  gradient plasticity  plastic strain gradient  ductile materials  material internal length  finite element method  C1 continuity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号