首页 | 本学科首页   官方微博 | 高级检索  
     


Computational micro‐mechanical model of flexible woven fabric for finite element impact simulation
Authors:Ala Tabiei  Ivelin Ivanov
Abstract:This work presents a computational material model of flexible woven fabric for finite element impact analysis and simulation. The model is implemented in the non‐linear dynamic explicit finite element code LSDYNA. The material model derivation utilizes the micro‐mechanical approach and the homogenization technique usually used in composite material models. The model accounts for reorientation of the yarns and the fabric architecture. The behaviour of the flexible fabric material is achieved by discounting the shear moduli of the material in free state, which allows the simulation of the trellis mechanism before packing the yarns. The material model is implemented into the LSDYNA code as a user defined material subroutine. The developed model and its implementation is validated using an experimental ballistic test on Kevlar woven fabric. The presented validation shows good agreement between the simulation utilizing the present material model and the experiment. Copyright © 2001 John Wiley & Sons, Ltd.
Keywords:computational material model  flexible woven fabric  textile composites  and explicit finite element ballistic impact simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号