首页 | 本学科首页   官方微博 | 高级检索  
     


Vinyl triazole carrying metal‐chelated beads for the reversible immobilization of glucoamylase
Authors:Senay Kök  Bilgen Osman  Ali Kara  Necati Be?irli
Affiliation:Department of Chemistry, Uludag University, Bursa, Turkey
Abstract:Poly(ethylene glycol dimethacrylate–1‐vinyl‐1,2,4‐triazole) poly(EGDMA–VTAZ)] beads with an average diameter of 100–200 μm were obtained by the copolymerization of ethylene glycol dimethacrylate (EGDMA) with 1‐vinyl‐1,2,4‐triazole (VTAZ). The copolymer hydrogel bead composition was determined by elemental analysis and was found to contain 5 EGDMA monomer units for each VTAZ monomer unit. The poly(EGDMA–VTAZ) beads were characterized by swelling studies and scanning electron microscopy (SEM). The specific surface area of the poly(EGDMA–VTAZ) beads was found 65.8 m2/g. Cu2+ ions were chelated on the poly(EGDMA–VTAZ) beads. The Cu2+ loading was 82.6 μmol/g of support. Cu2+‐chelated poly(EGDMA–VTAZ) beads with a swelling ratio of 84% were used in the immobilization of Aspergillus niger glucoamylase in a batch system. The maximum glucoamylase adsorption capacity of the poly(EGDMA–VTAZ)–Cu2+ beads was 104 mg/g at pH 6.5. The adsorption isotherm of the poly(EGDMA–VTAZ)–Cu2+ beads fitted well with the Langmuir model. Adsorption kinetics data were tested with pseudo‐first‐ and second‐order models. The kinetic studies showed that the adsorption followed a pseudo‐second‐order reaction model. The Michaelis constant value for the immobilized glucoamylase (1.15 mg/mL) was higher than that for free glucoamylase (1.00 mg/mL). The maximum initial rate of the reaction values were 42.9 U/mg for the free enzyme and 33.3 U/mg for the immobilized enzyme. The optimum temperature for the immobilized preparation of poly(EGDMA–VTAZ)–Cu2+–glucoamylase was 65°C; this was 5°C higher than that of the free enzyme at 60°C. The glucoamylase adsorption capacity and adsorbed enzyme activity slightly decreased after 10 batch successive reactions; this demonstrated the usefulness of the enzyme‐loaded beads in biocatalytic applications. The storage stability was found to increase with immobilization. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Keywords:adsorption  enzymes  metal–  polymer complexes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号