首页 | 本学科首页   官方微博 | 高级检索  
     


Development of high‐performance epoxy/clay nanocomposites by incorporating novel phosphonium modified montmorillonite
Authors:Keiji Saitoh  Kenji Ohashi  Toshiyuki Oyama  Akio Takahashi  Joji Kadota  Hiroshi Hirano  Kiichi Hasegawa
Affiliation:1. Hokko Chemical Industry Co. Ltd., 2165, Toda, Atsugi, Kanagawa 243‐0023, Japan;2. Faculty of Engineering, Yokohama National University 79‐5, Tokiwadai, Hodogaya‐ku, Yokohama, Kanagawa 240‐8501, Japan;3. Osaka Municipal Technical Research Institute 1‐6‐50, Morinomiya, Joto‐ku, Osaka 536‐8553, Japan
Abstract:Novel organoclays were synthesized by several kinds of phosphonium cations to improve the dispersibility in matrix resin of composites and accelerate the curing of matrix resin. The possibility of the application for epoxy/clay nanocomposites and the thermal, mechanical, and adhesive properties were investigated. Furthermore, the structures and morphologies of the epoxy/clay nanocomposites were evaluated by transmission electron microscopy. Consequently, the corporation of organoclays with different types of phosphonium cations into the epoxy matrix led to different morphologies of the organoclay particles, and then the distribution changes of silicate layers in the epoxy resin influenced the physical properties of the nanocomposites. When high‐reactive phosphonium cations with epoxy groups were adopted, the clay particles were well exfoliated and dispersed. The epoxy/clay nanocomposite realized the high glass‐transition temperature (Tg) and low coefficient of thermal expansion (CTE) in comparison with those of neat epoxy resin. On the other hand, in the case of low‐reactive phoshonium cations, the dispersion states of clay particles were intercalated but not exfoliated. The intercalated clay did not influence the Tg and CTE of the nanocomposite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Keywords:epoxy  nanocomposites  organoclay  curing behavior  exfoliation  thermal properties  adhesive properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号