首页 | 本学科首页   官方微博 | 高级检索  
     


Higher order numerical solution of the integral equation for the two-dimensional neumann problem
Authors:John L. Hess
Affiliation:Aerodynamics Basic Research, Douglas Aircraft Company, Long Beach, California, USA
Abstract:Interest in the problem of two-dimensional potential flow in arbitrary multiply-connected domains has been stimulated by the need to calculate flow about multiple airfoil configurations consisting of slats and flaps detached from the main airfoil. General methods of solution are based on the use of a singularity distribution over the boundary. The distribution is obtained as the solution of an integral equation over the boundary. In implementing this solution various investigators approximate the boundary by an inscribed polygon, whose faces are small flat surface elements. The singularity on each element is taken as constant by some investigators and linearly varying by others. This paper systematically investigates the effectiveness of higher order approximations of the integral equation, including use of curved surface elements and parabolically-varying singularity. It is found that the approach using flat elements with constant singularity is mathematically consistent as is the next higher-order approach with parabolic elements and linearly varying singularity. The popular approach based on flat elements with linearly varying singularity is shown to be mathematically inconsistent, and examples are presented for which the effect of element curvature is greater than that of the singularity derivative. A number of examples are presented to show that: (1) the higher order solutions give very little increase in accuracy for the important case of exterior flow about a convex body: (2) for bodies with substantial concave regions and for interior flows in ducts, the use of parabolic elements and linearly varying singularity can give a dramatic increase in accuracy; and (3) the use of still higher order solutions leads to a rather small additional gain in accuracy.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号