首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and characterization of novel graft copolymers by radiation‐induced grafting
Authors:Lale Işıkel Şanlı  Selmiye Alkan Gürsel
Affiliation:Faculty of Engineering and Natural Sciences, Sabanc? University, Istanbul 34956, Turkey
Abstract:The radiation‐induced graft copolymerization of N‐vinyl‐2‐pyrrolidone (NVP), 4‐vinyl pyridine (4VP), and 2‐vinyl pyridine (2VP) monomers onto poly (ethylene‐alt‐tetrafluoroethylene) (ETFE) was investigated. The influence of synthesis conditions particularly the solvent was studied. Various solvents, such as n‐propanol, isoproponol, benzyl alcohol, methanol, ethanol, cyclohexanone, tetrahydrofuran (THF), nitromethane, 1,4‐dioxane, and n‐heptane were examined for this purpose. Graft copolymers were characterized by Fourier transform infrared (FTIR) spectroscopy, dynamic mechanical analysis (DMA), and scanning electron microscopy‐energy dispersive spectroscopy (SEM‐EDAX). It was found that the nature of the solvent had profound influence over the grafting reaction. Cyclohexanone, n‐propanol, and isoproponol for 4VP/ETFE grafting, THF and 1,4‐dioxane for NVP/ETFE grafting, and benzyl alcohol and methanol for 2VP/ETFE grafting were found to be the suitable solvents yielding highest graft levels. Isoproponol and n‐propanol are promising in terms of both graft level and mechanical properties for 4VP/ETFE. Grafting of NVP, 4VP, and 2VP onto ETFE were verified through FTIR spectroscopy. Storage modulus and glass transition temperature of the copolymers were found to increase as graft level increased. Surface profile of representative films was also investigated by viewing the distribution of elemental nitrogen using SEM‐EDAX. Results indicated that copolymers of 4VP, NVP, and 2VP are considerably different from each other. 4VP‐based copolymers exhibited relatively more homogenous grafting over the surface compared with NVP‐ and 2VP‐based copolymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Keywords:graft copolymers  irradiation  membrane  solvent effect  fuel cell
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号