首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of combination of finite element formulation and element type on the accuracy of 3D modeling of polymeric fluid flow in an extrusion die
Authors:H Sobhani  M Razavi‐Nouri  M H R Ghoreishy
Affiliation:Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965/115, Tehran, Iran
Abstract:The aim of this work is to investigate the effect of finite element formulation and element type on the accuracy of 3D modeling of generalized Newtonian fluid flow in complex domains. Computer models based on three finite element solution schemes (mixed, continuous, and discrete penalty), and two element types (hexahedral and tetrahedral) in a 3D framework were developed. The well‐known Carreau model was used to reflect the rheological behavior of the fluid. To determine the validity of the developed computer simulations, the flow of two high‐density polyethylene (HDPE) melts with different viscosities through an extrusion die was simulated and compared with experimentally measured data. Comparison showed that the three methods produced nearly the same results with the hexahedral elements. However, continuous penalty method using tetrahedral elements demonstrated an extreme discrepancy from the experimental data. Discrete penalty method was unable to predict secondary variable (pressure) accurately using tetrahedral elements. The best results were obtained by the use of mixed method in conjunction with tetrahedral elements. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Keywords:finite element method  penalty method  mixed method  generalized Newtonian  extrusion die
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号