首页 | 本学科首页   官方微博 | 高级检索  
     


BUBBLE MEASUREMENTS IN A GAS-LIQUID JET
Authors:Kevin N Stanley  Dimitris E Nikitopoulos
Affiliation:  a Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA
Abstract:Measurements have been carried out in the developing and fully developed regions of a free, axisymmetric, isothermal, air-water, bubbly jet. Three experiments have been conducted at a fixed jet-exit Reynolds number and gas superficial velocity using three different bubble injector assemblies producing bubbles of moderately different average sizes and size distributions. The volume fraction of the bubbly jet flow examined in this study is low and the resulting dispersed flow is dilute. A one-component Phase-Doppler Velocimetry system has been employed to measure bubble size and velocity non-intrusively. Visual data collected simultaneously with the light-scattering measurements were analyzed with the aid of image processing and used to verify the trends portrayed by the light-scattering measurements and to determine average bubble size. Our measurements show that, even in the dilute flow examined here, differences in initial bubble-size and size distribution can influence the RMS velocity fluctuations of the bubbles, particularly in the jet development region. The average bubble velocities are less sensitive. Evidence that the development pattern of the jet near the exit is affected by the presence of the bubbles is also presented. Near the exit of the jet, bubbles are shown to be ejected laterally outside the jet due to the significant lift force caused by the high velocity gradient in the axisymmetric shear layer. The observed sensitivity of the bubble flow to size-related parameters and initial conditions in this dilute case, indicates that discrepancies in previous measurements of dispersed, bubbly flows could be attributed to different size characteristics and/or initial conditions.
Keywords:Jet  Bubbles  Phase-Doppler  Two-Phase
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号