首页 | 本学科首页   官方微博 | 高级检索  
     


Improving the fracture toughness of MgO–Al2O3–SiO2 glass/molybdenum composites by the microdispersion of flaky molybdenum particles
Authors:Y WAKU  M SUZUKI  Y ODA  Y KOHTOKU
Affiliation:(1) Ube Research Laboratory, Corporate Research and Development, UBE Industries, Ltd., 1978-5, Kogushi, Ube City,Yamaguchi 755, Japan
Abstract:The flake-forming behaviour of powders of molybdenum, niobium, nickel, BS 316 S 12, Ni–17Cr–6Al–0.6Y, iron, titanium and Ti–6Al–4V, using a wet ball mill, was investigated. MgO–Al2O3–SiO2 (MAS) glass composites reinforced with these flaked particles were fabricated, and improvements in flexural strength evaluated. The MAS glass composites reinforced with flaky metallic particles such as molybdenum, niobium, iron, nickel and Ni–17Cr–6Al–0.6Y, showed an improvement. The effect of molybdenum particle size on the flake-forming behaviour of molybdenum, flexural strength and fracture toughness of MAS glass/molybdenum composites, were investigated. The flake-forming behaviour shows a high degree of dependence on molybdenum particle size and, upto a size of 32 μm, becomes conspicuous with increasing particle size. At 32 μm, the aspect ratio reaches a value of 17 and, above 32 μm, flake forming saturates. Fracture toughness is closely related to flake-forming behaviour and the more marked the flake forming, the greater is the increase in fracture toughness. A composite of MAS glass with flaky molybdenum particles has a greater improvement effect on fracture toughness than composites with SiC whiskers, SiC platelets or ZrO2 particles. This is closely linked to plastic deformation of the flaky metallic particles at the crack tip at the time of fracture. This revised version was published online in November 2006 with corrections to the Cover Date.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号