首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge Reactors
Authors:Lukes   P. Appleton   A.T. Locke   B.R.
Affiliation:Dept. of Chem. Eng., Florida State Univ., Prague, Czech Republic;
Abstract:Ozone in the gas phase and hydrogen peroxide in the liquid phase were simultaneously formed in hybrid electrical discharge reactors, known as the hybrid-series and hybrid-parallel reactors, which utilize both gas phase nonthermal plasma formed above the water surface and direct liquid phase corona-like discharge in the water. In the series configuration the high voltage needle-point electrode is submerged and the ground electrode is placed in the gas phase above the water surface. The parallel configuration employs a high voltage electrode in the gas phase and a high voltage needle-point electrode in the liquid phase with the ground electrode placed at the gas-liquid interface. In both hybrid reactors the gas phase concentration of ozone reached a power-dependent steady state, whereas the hybrid-parallel reactor produced a substantially larger amount of ozone than the hybrid series. Hydrogen peroxide was produced in both hybrid reactors at a similar rate to that of a single-phase liquid electrical discharge reactor. The resulting concentration of H/sub 2/O/sub 2/ in the hybrid reactors, however, depended on the pH of the solution and the gas phase ozone concentration since H/sub 2/O/sub 2/ was decomposed by dissolved ozone at high pH.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号