首页 | 本学科首页   官方微博 | 高级检索  
     

基于相关向量回归的仿真元建模方法
引用本文:吴冰,程思微,张文琼,梁加红. 基于相关向量回归的仿真元建模方法[J]. 计算机工程, 2010, 36(3): 24-27
作者姓名:吴冰  程思微  张文琼  梁加红
作者单位:1. 国防科技大学机电工程与自动化学院,长沙,410073
2. 第二炮兵网管中心,北京,100085
基金项目:国家自然科学基金资助项目(60704038)
摘    要:针对支持向量回归元模型存在的不足,提出将相关向量回归应用于仿真元建模,使用多个不同维度和非线性程度的基准测试函数,在元模型精确性、采样技术、样本规模、模型维度和非线性程度等多方面与多项式回归、Kriging、径向基函数、支持向量回归4种方法进行对比研究,结果证明该方法具有较高的精确性和鲁棒性。

关 键 词:元建模  相关向量回归  支持向量回归
修稿时间: 

Simulation Metamodeling Approach Based on Relevance Vector Regression
WU Bing,CHENG Si-wei,ZHANG Wen-qiong,LIANG Jia-hong. Simulation Metamodeling Approach Based on Relevance Vector Regression[J]. Computer Engineering, 2010, 36(3): 24-27
Authors:WU Bing  CHENG Si-wei  ZHANG Wen-qiong  LIANG Jia-hong
Affiliation:(1. College of Electromechanical Engineering and Automation, National University of Defense Technology, Changsha 410073;
2. Network Management Centre of Second Artillery Arming, Beijing 100085)
Abstract:Aiming at the shortcoming of support vector regression metamodel, Relevance Vector Regression(RVR) is investigated as an alternative metamodeling approach. Using several benchmark test functions with varying model dimensions and degrees of nonlinearity, RVR is compared with four metamodeling approaches, including polynomial regression, Kriging, radial basis function and support vector regression. Several performance criterions are considered, including metamodel accuracy, effect of sampling techniques, effect of sample size, effect of model dimensions and degrees of nonlinearity. Results prove that RVR approach can achieve higher accuracy and more robustness.
Keywords:metamodeling  Relevance Vector Regression(RVR)  support vector regression
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号