首页 | 本学科首页   官方微博 | 高级检索  
     


Methanol Conversion to Hydrocarbons (MTH) Over H-ITQ-13 (ITH) Zeolite
Authors:Wegard Skistad  Shewangizaw Teketel  Francesca Lønstad Bleken  Pablo Beato  Silvia Bordiga  Merete Hellner Nilsen  Unni Olsbye  Stian Svelle  Karl Petter Lillerud
Affiliation:1. inGAP Center for Research Based Innovation, Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway
2. Haldor Tops?e, Nym?llevej 55, 2800, Kgs. Lyngby, Denmark
3. Department of Chemistry, INSTM Centro di Riferimento and NIS Centre of Excellence, Universita’ di Torino, Via Quarello 15, 10135, Turin, Italy
Abstract:Product flexibility is key to meeting fluctuating chemicals demands in the future. In this contribution, the methanol to hydrocarbons (MTH) reaction was investigated over two Ge-containing H-ITQ-13 samples, one with needle-like (H-ITQ-13(N), with (Si+Ge)/Al) = 42) and another with plate-like (H-ITQ-13(P), with (Si+Ge)/Al > 100) morphology. The samples were characterised using XRD, BET, SEM/EDS and FTIR spectroscopy, and their MTH performance was compared with the performance of H-ZSM-5 and H-ZSM-22. Similar specific surface areas (413 and 455 m2 g?1 for H-ITQ-13(N) and (P), respectively) and similar acid strength (Δν ~ ?327(?310) cm?1) was observed for the two H-ITQ-13 samples. Testing of H-ITQ-13(N) at weight hourly space velocity (WHSV) = 2–8 h?1 at 350–450 °C revealed that C5+ alkenes were the main products (35–45 % selectivity at 400 °C), followed by propene and butene. A low but significant selectivity for aromatic products was observed (6–8 % selectivity at 400 °C). Product selectivity was found to be independent of deactivation. The methanol conversion capacity of H-ITQ-13(N) was 120–150 g methanol g?1 catalyst at 400 °C. Testing H-ITQ-13 at high (30 atm) and ambient pressure, respectively, at 350 °C showed that a high pressure led to enhanced C5+ selectivity, but close to a tenfold decrease in methanol conversion capacity. H-ITQ-13(P) was tested at 400 °C and 2 h?1. It gave lower conversion than H-ITQ-13(N). Furthermore, when compared at the same conversion level, H-ITQ-13(P) gave higher C5+ alkene selectivity, lower aromatics selectivity, and a higher propene to ethene ratio than H-ITQ-13(N). The H-ITQ-13 samples yielded a product spectrum intermediate of H-ZSM-22 and H-ZSM-5. The effluent product cut-off of H-ITQ-13 was similar to that of H-ZSM-5 with tetramethylbenzene as the largest significant product, while H-ZSM-22 produced mainly linear and branched alkenes. The lifetime of H-ITQ-13(N) was clearly enhanced compared to H-ZSM-22, but inferior to H-ZSM-5.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号