首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of platinum on the oxide-to-metal adhesion in thermal barrier coating systems
Authors:H. M. Tawancy  A. UI-Hamid  N. M. Abbas  M. O. Aboelfotoh
Affiliation:(1) Center for Engineering Research, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia;(2) Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Abstract:An investigation was conducted to determine the role of Pt in a thermal barrier coating system deposited on a nickel-base superalloy. Three coating systems were included in the study using a layer of yttria-stabilized zirconia as a model top coat, and simple aluminide, Pt-aluminide, and Pt bond coats. Thermal exposure tests at 1,150 °C with a 24-h cycling period to room temperature were used to compare the coating performance. Additional exposure tests at 1,000, 1,050, and 1,100 °C were conducted to study the kinetics of interdiffusion. Microstructural features were characterized by scanning electron microscopy and transmission electron microscopy combined with energy dispersive X-ray spectroscopy as well as X-ray diffraction. Wavelength dispersive spectroscopy was also used to qualitatively distinguish among various refractory transition metals. Particular emphasis was placed upon: (i) thermal stability of the bond coats, (ii) thickening rate of the thermally grown oxide, and (iii) failure mechanism of the coating. Experimental results indicated that Pt acts as a “cleanser” of the oxide-bond coat interface by decelerating the kinetics of interdiffusion between the bond coat and superalloy substrate. This was found to promote selective oxidation of Al resulting in a purer Al2O3 scale of a slower growth rate increasing its effectiveness as “glue” holding the ceramic top coat to the underlying metallic substrate. However, the exact effect of Pt was found to be a function of the state of its presence within the outermost coating layer. Among the bond coats included in the study, a surface layer of Pt-rich γ′-phase (L12 superlattice) was found to provide longer coating life in comparison with a mixture of PtAl2 and β-phase.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号