首页 | 本学科首页   官方微博 | 高级检索  
     

认知网络中基于小波分析的切换判决
引用本文:王景尧,宋梅,张勇,张英海. 认知网络中基于小波分析的切换判决[J]. 北京邮电大学学报, 2010, 33(6): 98-102. DOI: 10.3969/j.issn.1007-5321.2010.06.022
作者姓名:王景尧  宋梅  张勇  张英海
作者单位:北京邮电大学,电子工程学院,北京,100876;北京邮电大学,电子工程学院,北京,100876;北京邮电大学,电子工程学院,北京,100876;北京邮电大学,电子工程学院,北京,100876
基金项目:国家高技术研究发展计划项目,国家自然科学基金项目,国家科技重大专项项目
摘    要:基于小波分析和模式识别理论,提出一种认知网络中的切换判决算法. 对基站得到的移动台信号进行多分辨分析,得到移动台信号的基本信号强度和噪音信号强度;在此基础上通过人工神经模糊推理系统对得到的结果进行模式识别;通过模糊推理做出切换判决. 仿真结果表明,该算法在信道信噪比不断降低的情况下依然可得到较好的判决结果,实现了认知网络通过感知环境变化而做出自适应调整的功能,并具有较好的可靠性.

关 键 词:认知网络  小波分析  模式识别
收稿时间:2009-10-22

Handover Decision Method Based on Wavelet for Cognitive Network
WANG Jing-yao,SONG Mei,ZHANG Yong,ZHANG Ying-hai. Handover Decision Method Based on Wavelet for Cognitive Network[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(6): 98-102. DOI: 10.3969/j.issn.1007-5321.2010.06.022
Authors:WANG Jing-yao  SONG Mei  ZHANG Yong  ZHANG Ying-hai
Abstract:A handover decision method for cognitive networks is investigated in the context of wavelet and pattern recognition. It follows two steps: firstly, making multi resolution analysis to the signal received in base station to get the basic signal and the noise signal. Secondly, making the pattern recognition and handover decision by artificial neural fuzzy inference system. Simulation shows that it greatly improve the system’s performance when the channel is in low signal to noise ratio. Besides, it makes the system cognitive and adaptive to the changes of the environment.
Keywords:cognitive network  wavelet analysis  pattern recognition
本文献已被 万方数据 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号