首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical investigation on porous media heat transfer in a solar tower receiver
Authors:Chang Xu  Zhe Song  Lea-der Chen  Yuan Zhen
Affiliation:1. College of Energy and Electricity, Hohai University, Nanjing, Jiangsu Province 210098, China;2. College of Engineering, The University of Iowa, Iowa City, IA 52242, USA;3. School of Management, Nanjing University, Nanjing, Jiangsu Province 210093, China
Abstract:In order to investigate the steady heat transfer characteristics of a porous media solar tower receiver developed in China, this paper applies the steady heat and mass transfer models of the porous media to solar receivers, chooses the preferable volume convection heat transfer coefficient model, solves these equations by using the numerical method, and analyzes the typical influences of the porosity, average particle diameter, air inlet velocity, and thickness on the temperature distribution. The following conclusions have been drawn: in the same position or relative position along the downstream, the bigger the average particle diameter is, the higher the solid matrix dimensionless temperature is, the higher the air dimensionless temperature is. The bigger the porosity is, the lower the solid matrix dimensionless temperature is, the bigger the porosity is, the higher the air dimensionless temperature is. The bigger the thickness is, the lower the solid matrix dimensionless temperature is, the higher the air dimensionless temperature is. In a certain depth, the bigger the air inlet velocity is, the higher the solid matrix dimensionless temperature is. After a certain depth, the bigger the air inlet velocity is, the lower the solid matrix dimensionless temperature is, and the bigger the air inlet velocity is, the higher the air dimensionless temperature is. The paper can provide a reference for this type of receiver design and reconstruction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号