首页 | 本学科首页   官方微博 | 高级检索  
     

基于时空多特征融合网络的三维人体姿态估计北大核心CSCD
引用本文:叶俊,张云. 基于时空多特征融合网络的三维人体姿态估计北大核心CSCD[J]. 光电子.激光, 2022, 0(12): 1306-1314
作者姓名:叶俊  张云
作者单位:云南省计算机应用重点实验室,云南 昆明 650500,云南省计算机应用重点实验室,云南 昆明 650500 ;昆明理工大学 信息工程与自动化学院,云南 昆明 650500
基金项目:国家自然科学基金(61262043)、云南省科技计划项目(2011FZ029)和重点实验室开放基金 项目(2020106)资助项目
摘    要:目前,常见的三维(3D)人体姿态估计算法在表征学习上取得很好的效果,但是在人体骨架关节点处依然存在估计精度不佳等问题,因此,如何从单目RGB图像中利用冗余的二维(2D)姿态序列时空信息来估计人体姿态的有效方式是一个研究的难点。本文提出一种基于时空多特征融合网络的三维人体姿态估计算法,具体是结合一种图像外观信息和运动时序信息时空多特征融合层级方法,该方法利用一种紧凑的卷积神经网络(convolutional neural network, CNN)学习时空信息将二维关节点位置信息建模为三维关节点位置。实验结果表明,本文所提出的方法能实现较为先进的端对端姿态估计精度,而且不需要任何后处理阶段的姿态优化方法,本文得到的姿态估计在平均精度上得到有效的提升,证明本文方法能够有效提高人体姿态估计的准确性。

关 键 词:三维人体姿态估计  时空特征  运动补偿网络  特征融合网络
收稿时间:2022-02-22
修稿时间:2022-04-08

Three-dimensional human pose estimation based on spatio-temporal multi-featur e fusion network
YE Jun and ZHANG Yun. Three-dimensional human pose estimation based on spatio-temporal multi-featur e fusion network[J]. Journal of Optoelectronics·laser, 2022, 0(12): 1306-1314
Authors:YE Jun and ZHANG Yun
Affiliation:Key Laboratory of Applications of Computer Technology of Yunnan Province,Kun ming,Yunnan 650500, China and Key Laboratory of Applications of Computer Technology of Yunnan Province,Kun ming,Yunnan 650500, China;School of Information Engineering and Automation,Kunming Univer sity of Science and Technology,Kunming,Yunnan 650500, China
Abstract:At present,the common 3D human pose es timation algorithms have achieved good results in representation learning,but th ere are still problems such as poor estimation accuracy at the joint points of the human skeleton.Therefore,how to effectively estimate human pose from a monocular RGB image using the redundant 2D pose sequence sptatio-temporal information is a different point in the research. In this paper,a 3D human pose estimation algorithm based on spati o-temporal multi-feature fusion network is proposed.The method utilizes a compact convolu tional neural network to learn spatio-temporal information to model the 2D joint position inf ormation as 3D joint position.The experimental results show that the method proposed in this paper can achieve relatively advanced end-to-end attitude estimation accuracy,and does not requ ire any attitude optimization method in the post-processing stage.The pose estimation obtained in this paper can effectively improve the average accuracy, which proves that the method in this paper can effectively improve the accuracy of human pose estimati on.
Keywords:3D human pose estimation   spatio-temporal features   motion compensation network    feature fusion network
本文献已被 维普 等数据库收录!
点击此处可从《光电子.激光》浏览原始摘要信息
点击此处可从《光电子.激光》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号