首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of thermal processing on the antioxidant mechanisms of continuous phase β-lactoglobulin in oil-in-water emulsions
Authors:Ryan J. Elias  D. Julian McClementsEric A. Decker
Affiliation:Department of Food Science, Chenoweth Laboratory, University of Massachusetts, Amherst, MA 01003, United States
Abstract:The influence of native and thermally (50–95 °C) denatured β-lactoglobulin (β-Lg) on the oxidative stability of surfactant-stabilized menhaden oil-in-water emulsions (pH 7.0) was evaluated. β-Lg (500 μg/g oil) heated at 95 °C for 30 min provided the best protection against lipid oxidation, inhibiting the formation of lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS) by 87% and 88%, respectively, following 7 days of storage. The possible mechanisms of antioxidant activity of native and heated β-Lg were evaluated by measuring peroxyl radical scavenging and iron chelating capacities of the protein treatments, as well as reactive sulfhydryl concentrations and tryptophan fluorescence (a marker of protein conformation changes). The aforementioned in vitro assays only partially corroborated the results from the oxidizing emulsion system since β-Lg heated at 95 °C exhibited the lowest iron chelation capacity and free sulfhydryl concentration, yet displayed the highest peroxyl radical scavenging capacity and inhibition of lipid oxidation in oil-in-water emulsions of all treatments tested. The results of this study demonstrate the feasibility of proteins as a natural class of antioxidants in food emulsions, and further elucidate the possible mechanisms by which proteins inhibit lipid oxidation.
Keywords:Lipid oxidation   Thermal denaturation   β-Lactoglobulin   Food emulsions   Antioxidants
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号