首页 | 本学科首页   官方微博 | 高级检索  
     


Modulation of thermal stability and heat-induced gelation of β-lactoglobulin by high glycerol and sorbitol levels
Authors:Wanlop Chanasattru  Eric A DeckerD Julian McClements
Affiliation:Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
Abstract:The influence of glycerol and sorbitol on the thermal stability and heat-induced gelation of β-lactoglobulin (β-lg) in aqueous solutions was investigated. The thermal stability of β-lg was characterized by measuring the thermal denaturation temperature (Tm) using differential scanning calorimetry, while its gelation properties were characterized by measuring the gelation temperature (Tgel) and final gel rigidity (G) using dynamic shear rheology. All experiments were carried out using aqueous solutions containing 10% (w/w) β-lg, glycerol (0–70% w/w) or sorbitol (0–55% w/w), and 5 mM phosphate buffer (pH 7.0). No salt was added to these solutions so that there was a relatively strong electrostatic repulsion between the protein molecules, which usually prevents gelation. When the cosolvent concentration was increased from 0% to 50%, Tm increased from 74 to 86 °C for sorbitol, but only from 74 to 76 °C for glycerol, which indicated that sorbitol was much more effective at stabilizing the native state of the globular protein than glycerol. Protein solutions containing sorbitol (0–55%) did not form a gel after heating, but those containing glycerol formed gels when the cosolvent concentration exceeded about 10%, with G increasing with increasing glycerol concentration. We attribute these effects to differences in the preferential interactions of polyols and water with the surfaces of native and heat-denatured proteins, and their influence on the protein–protein collision frequency.
Keywords:β-Lactoglobulin  Heat denaturation  Gelation  Glycerol  Sorbitol
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号