首页 | 本学科首页   官方微博 | 高级检索  
     


Heteroanionic Materials by Design: Progress Toward Targeted Properties
Authors:Jaye K Harada  Nenian Charles  Kenneth R Poeppelmeier  James M Rondinelli
Abstract:The burgeoning field of anion engineering in oxide‐based compounds aims to tune physical properties by incorporating additional anions of different size, electronegativity, and charge. For example, oxychalcogenides, oxynitrides, oxypnictides, and oxyhalides may display new or enhanced responses not readily predicted from or even absent in the simpler homoanionic (oxide) compounds because of their proximity to the ionocovalent‐bonding boundary provided by contrasting polarizabilities of the anions. In addition, multiple anions allow heteroanionic materials to span a more complex atomic structure design palette and interaction space than the homoanionic oxide‐only analogs. Here, established atomic and electronic principles for the rational design of properties in heteroanionic materials are contextualized. Also described are synergistic quantum mechanical methods and laboratory experiments guided by these principles to achieve superior properties. Lastly, open challenges in both the synthesis and the understanding and prediction of the electronic, optical, and magnetic properties afforded by anion‐engineering principles in heteroanionic materials are reviewed.
Keywords:electronic structure  heteroanionic materials  materials design  oxyfluorides  transition metal compounds
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号