首页 | 本学科首页   官方微博 | 高级检索  
     


Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes
Authors:Gang Huang  Jiuhui Han  Fan Zhang  Ziqian Wang  Hamzeh Kashani  Kentaro Watanabe  Mingwei Chen
Abstract:The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries.
Keywords:batteries  dendrite suppression  Li‐metal anodes  nanoporous N‐doped graphene
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号