首页 | 本学科首页   官方微博 | 高级检索  
     


A Site‐Specific Charge Carrier Control in Monolithic Integrated Amorphous Oxide Semiconductors and Circuits with Locally Induced Optical‐Doping Process
Authors:Kyung‐Tae Kim  Seong‐Pil Jeon  Woobin Lee  Jeong‐Wan Jo  Jae Sang Heo  Insoo Kim  Yong‐Hoon Kim  Sung Kyu Park
Abstract:Amorphous oxide semiconductor (AOS) thin film transistors (TFTs) have found cutting‐edge applications in sensor technologies. To reduce manufacturing costs, sensors, analog front end, and digital signal processing circuits need to be integrated on the identical substrate. Unlike traditional silicon‐based devices, optimizations for locally controllable electrical parameters of the AOSs have rarely been investigated. Here, photoactivated combustion reduction is utilized as doping motivation for solution‐processed amorphous indium–gallium–zinc oxide (a‐IGZO) to tune their electrical performance. By controlling parameters of a‐IGZO TFTs, which can be partly doped with covering the desired area of the identical substrate, it is possible to match the particular threshold voltage for various circuits. For circuit optimization, automatic integrated circuit modeling spice is carried out to find the best match of the complementary metal–oxide semiconductor circuits. Finally, the site‐specific performance of switching TFTs, amplifiers, and ring oscillators implemented with low‐temperature solution‐processed a‐IGZO and p‐type single‐walled carbon nanotube TFTs is demonstrated. The optical‐doped a‐IGZO TFTs exhibiting a saturation mobility of >9.15 cm2 V?1 s?1 with a locally tunable threshold voltage of ?5 – 1.5 V are realized, enabling monolithic integration of functional devices. The resultant circuits demonstrate excellent amplification of 24 dB and an oscillation frequency of 12 kHz for 7‐stage ring oscillators.
Keywords:amorphous oxide semiconductors  complementary amplifier  controllable threshold voltage  optical‐doping  photochemical activation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号