Abstract: | Moisture‐delicate and water‐unstable organic–inorganic halide perovskites (OI‐HPs) create huge challenges for the synthesis of highly efficient water‐stable light‐emitting materials for optoelectronic devices. Herein, a simple acid solution–assisted method to synthesize quantum confined 2D lead perovskites through Mn doping is reported. The efficient energy transfer between host and dopant ions in orange light‐emitting Mn2+‐doped OI‐HPs leads to the most efficient integrated luminescence with a photoluminescence quantum yield over 45%. The Mn2+ substitution of Pb2+ and passivation with low dielectric constant molecules such as phenethylamine, benzylamine, and butylamine enhance water resistivity, leading to water stability. The dual emission process of this water‐stable 2D Mn‐doped perovskite will help in developing highly efficient 2D water‐stable perovskites for practical applications. |