首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient Ruddlesden–Popper Perovskite Light‐Emitting Diodes with Randomly Oriented Nanocrystals
Authors:Hyeon‐Dong Lee  Hobeom Kim  Himchan Cho  Wonhee Cha  Yongseok Hong  Young‐Hoon Kim  Aditya Sadhanala  Vijay Venugopalan  Joo Sung Kim  Jin Woo Choi  Chang‐Lyoul Lee  Dongho Kim  Hoichang Yang  Richard H Friend  Tae‐Woo Lee
Abstract:Ruddlesden–Popper phase (RP‐phase) perovskites that consist of 2D perovskite slabs interleaved with bulky organic ammonium (OA) are favorable for light‐emitting diodes (LEDs). The critical limitation of LED applications is that the insulating OA arranged in a preferred orientation limits charge transport. Therefore, the ideal solution is to achieve a randomly connected structure that can improve charge transport without hampering the confinement of the electron–hole pair. Here, a structurally modulated RP‐phase metal halide perovskite (MHP), (PEA)2(CH3NH3)m?1PbmBr3m+1 is introduced to make the randomly oriented RP‐phase unit and ensure good connection between them by applying modified nanocrystal pinning, which leads to an increase in the efficiency of perovskite LEDs (PeLEDs). The randomly connected RP‐phase MHP forces contact between inorganic layers and thereby yields efficient charge transport and radiative recombination. Combined with an optimal dimensionality, (PEA)2(CH3NH3)2Pb3Br10, the structurally modulated RP‐phase MHP exhibits increased photoluminescence quantum efficiency, from 0.35% to 30.3%, and their PeLEDs show a 2,018 times higher current efficiency (20.18 cd A?1) than in the 2D PeLED (0.01 cd A?1) and 673 times than in the 3D PeLED (0.03 cd A?1) using the same film formation process. This approach provides insight on how to solve the limitation of RP‐phase MHP for efficient PeLEDs.
Keywords:carrier transport  nanocrystal orientation  nanocrystal pinning  quasi‐2D perovskite  structural modulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号